Book Image

Mastering ROS for Robotics Programming - Second Edition

By : Jonathan Cacace, Lentin Joseph
Book Image

Mastering ROS for Robotics Programming - Second Edition

By: Jonathan Cacace, Lentin Joseph

Overview of this book

In this day and age, robotics has been gaining a lot of traction in various industries where consistency and perfection matter. Automation is achieved via robotic applications and various platforms that support robotics. The Robot Operating System (ROS) is a modular software platform to develop generic robotic applications. This book focuses on the most stable release of ROS (Kinetic Kame), discusses advanced concepts, and effectively teaches you programming using ROS. We begin with aninformative overview of the ROS framework, which will give you a clear idea of how ROS works. During the course of this book, you’ll learn to build models of complex robots, and simulate and interface the robot using the ROS MoveIt! motion planning library and ROS navigation stacks. Learn to leverage several ROS packages to embrace your robot models. After covering robot manipulation and navigation, you’ll get to grips with the interfacing I/O boards, sensors, and actuators of ROS. Vision sensors are a key component of robots, and an entire chapter is dedicated to the vision sensor and image elaboration, its interface in ROS and programming. You’ll also understand the hardware interface and simulation of complex robots to ROS and ROS Industrial. At the end of this book, you’ll discover the best practices to follow when programming using ROS.
Table of Contents (22 chapters)
Title Page
Copyright and Credits
www.PacktPub.com
Contributors
Preface
Index

Applications of topics, services, and actionlib


Topics, services, and actionlib are used in different scenarios. We know topics are a unidirectional communication method, services are a bidirectional request/reply kind of communication, and actionlib is a modified form of ROS services in which we can cancel the executing process running on the server whenever required.

Here are some of the areas where we use these methods:

  • Topics: Streaming continuous data flow, such as sensor data. For example, stream joypad data to teleoperate a robot, publish robot odometry, publish video stream from a camera.
  • Services: Executing procedures that terminate quickly. For example, save calibration parameter of sensors, save a map generated by the robot during its navigation, or load a parameter file.
  • Actionlib: Execute long and complex actions managing their feedback. For example, navigate towards a target or plan a motion path.

The complete source code of this project can be cloned from the following Git repository...