Book Image

ROS Robotics Projects - Second Edition

By : Ramkumar Gandhinathan
Book Image

ROS Robotics Projects - Second Edition

By: Ramkumar Gandhinathan

Overview of this book

Nowadays, heavy industrial robots placed in workcells are being replaced by new age robots called cobots, which don't need workcells. They are used in manufacturing, retail, banks, energy, and healthcare, among other domains. One of the major reasons for this rapid growth in the robotics market is the introduction of an open source robotics framework called the Robot Operating System (ROS). This book covers projects in the latest ROS distribution, ROS Melodic Morenia with Ubuntu Bionic (18.04). Starting with the fundamentals, this updated edition of ROS Robotics Projects introduces you to ROS-2 and helps you understand how it is different from ROS-1. You'll be able to model and build an industrial mobile manipulator in ROS and simulate it in Gazebo 9. You'll then gain insights into handling complex robot applications using state machines and working with multiple robots at a time. This ROS book also introduces you to new and popular hardware such as Nvidia's Jetson Nano, Asus Tinker Board, and Beaglebone Black, and allows you to explore interfacing with ROS. You'll learn as you build interesting ROS projects such as self-driving cars, making use of deep learning, reinforcement learning, and other key AI concepts. By the end of the book, you'll have gained the confidence to build interesting and intricate projects with ROS.
Table of Contents (14 chapters)

Hardware and software prerequisites

The following lists the hardware components that are required for building this project:

  • Webcam
  • Dynamixel AX-12A servo with mounting bracket
  • USB-to-Dynamixel adapter
  • Extra 3-pin cables for AX-12 servos
  • Power adapter
  • 6-port AX/MX power hub
  • USB extension cable

If you are thinking that the total cost is not affordable, then there are cheap alternatives to do this project too. The main heart of this project is the Dynamixel servo. We can replace this servo with RC servos, which only cost around $10, and an Arduino board costing around $20 can be used to control the servo too. The ROS and Arduino interfacing will be discussed in the upcoming chapters, so you can think about porting the face tracker project using an Arduino and RC servo.

Okay, let's look at the software prerequisites of the project. The prerequisites include the ROS framework...