Book Image

Rapid BeagleBoard Prototyping with MATLAB and Simulink

Book Image

Rapid BeagleBoard Prototyping with MATLAB and Simulink

Overview of this book

As an open source embedded single-board computer with many standard interfaces, Beagleboard is ideal for building embedded audio/video systems to realize your practical ideas. The challenge is how to design and implement a good digital processing algorithm on Beagleboard quickly and easily without intensive low-level coding. Rapid BeagleBoard Prototyping with MATLAB and Simulink is a practical, hands-on guide providing you with a number of clear, step-by-step exercises which will help you take advantage of the power of Beagleboard and give you a good grounding in rapid prototyping techniques for your audio/video applications. Rapid BeagleBoard Prototyping with MATLAB and Simulink looks at rapid prototyping and how to apply these techniques to your audio/video applications with Beagleboard quickly and painlessly without intensive manual low-level coding. It will take you through a number of clear, practical recipes that will help you to take advantage of both the Beagleboard hardware platform and Matlab/Simulink signal processing. We will also take a look at building S-function blocks that work as hardware drivers and interfaces for Matlab/Simulink. This gives you more freedom to explore the full range of advantages provided by Beagleboard. By the end of this book, you will have a clear idea about Beagleboard and Matlab/Simulink rapid prototyping as well as how to develop voice recognition systems, motion detection systems with I/O access, and serial communication for your own applications such as a smart home.
Table of Contents (15 chapters)
Rapid BeagleBoard Prototyping with MATLAB and Simulink
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Performance optimization by parameter tuning


In practice, for the best recognition performance, the recognition program has to be optimized for environment and configurations. For example, the background noise levels are different in different application scenarios. Different microphones have varying voice capture performance, which may lead to various voice levels.

To cope with these adverse factors, the parameters of the recognition program have to be adjusted for performance optimization. For most application-oriented projects, we need to run the cognition program at the target hardware platform and verify its performance in realistic scenarios at different parameter values. The traditional design-implementation-validation loop is time-consuming, as it may involve a huge amount of coding and recoding. Automatic code generation and adjusting parameters on the fly are the promising features of the BeagleBoard rapid prototyping, which not only allow us to reduce the development time, but...