Book Image

Mastering Internet of Things

By : Peter Waher
Book Image

Mastering Internet of Things

By: Peter Waher

Overview of this book

The Internet of Things (IoT) is the fastest growing technology market. Industries are embracing IoT technologies to improve operational expenses, product life, and people's well-being. Mastering Internet of Things starts by presenting IoT fundamentals and the smart city. You will learn the important technologies and protocols that are used for the Internet of Things, their features, corresponding security implications, and practical examples on how to use them. This book focuses on creating applications and services for the Internet of Things. Further, you will learn to create applications and services for the Internet of Things. You will be discover various interesting projects and understand how to publish sensor data, control devices, and react to asynchronous events using the XMPP protocol. The book also introduces chat, to interact with your devices. You will learn how to automate your tasks by using Internet of Things Service Platforms as the base for an application. You will understand the subject of privacy, requirements they should be familiar with, and how to avoid violating any of the important new regulations being introduced. At the end of the book, you will have mastered creating open, interoperable and secure networks of things, protecting the privacy and integrity of your users and their information.
Table of Contents (24 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

Performing basic error correction


Values we sample may include different types of errors, some of which we can eliminate in the code to various degrees. There are systematic errors and random errors. Systematic errors are most often caused by the way we've constructed our device, how we sample, how the circuit is designed, how the sensors are situated, how they interact with the physical medium and our underlying mathematical model, or how we convert the sampled value into a physical quantity. Reducing systematic errors requires a deeper analysis that goes beyond the scope of this book.

Random errors are errors that are induced stochastically and are often unbiased. They can be induced due to a lack of resolution or precision, by background noise, or through random events in the physical world. While background noise and the lack of resolution or precision in our electronics create a noise in the measured input, random events in the physical world may create spikes. If something briefly flutters...