Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Finding the right device driver

A typical embedded board is based on a reference design from the manufacturer with changes to make it suitable for a particular application. The BSP that comes with the reference board should support all of the peripherals on that board. But, then you customize the design, perhaps by adding a temperature sensor attached via I2C, some lights and buttons connected via GPIO pins, a display panel via a MIPI interface, or many other things. Your job is to create a custom kernel to control all of these, but where do you start looking for device drivers that support all these peripherals?

The most obvious place to look is the driver support page on the manufacturer's website, or you could ask them directly. In my experience, this seldom gets the result you want; hardware manufacturers are not particularly Linux-savvy, and they often give you misleading information. They may have proprietary drivers as binary blobs, or they may have source code but for...