Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Summary

Device drivers have the job of handling devices, usually physical hardware but sometimes virtual interfaces, and presenting them to the user space in a consistent and useful way. Linux device drivers fall into three broad categories: character, block, and network. Of the three, the character driver interface is the most flexible and therefore, the most common. Linux drivers fit into a framework known as the driver model, which is exposed through sysfs. Pretty much the entire state of the devices and drivers is visible in /sys.

Each embedded system has its own unique set of hardware interfaces and requirements. Linux provides drivers for most standard interfaces, and by selecting the right kernel configuration, you can get a working target board very quickly. This leaves you with the non-standard components, for which you will have to add your own device support.

In some cases, you can sidestep the issue by using generic drivers for GPIO, I2C, and so on, and write user...