Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Service supervision

Once we have created service directories with run scripts under /etc/sv and ensured that BusyBox init starts runsvdir, BusyBox runit handles all the rest. That includes starting, stopping, monitoring, and restarting all the services under its control. The runsvdir utility starts a runsv process for each service directory and restarts a runsv process if it terminates. Because run scripts run their respective daemons in the foreground, runsv expects run to block so that when run exits, runsv will restart it automatically.

Service auto-restart is desirable during system startup because run scripts can crash. This is especially true under BusyBox runit where services start virtually simultaneously instead of one after the other. For instance, a service may fail to start when a dependent service or essential system resource (such as a GPIO or device driver) is not yet available. In the next section, I will show you how to express dependencies between services so that...