Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Virtual memory basics

To recap, Linux configures the memory management unit (MMU) of the CPU to present a virtual address space to a running program that begins at zero and ends at the highest address, 0xffffffff, on a 32-bit processor. This address space is divided into pages of 4 KiB by default. If 4 KiB pages are too small for your application, then you can configure the kernel to use HugePages, reducing the amount of system resources needed to access page table entries and increasing the Translation Lookaside Buffer (TLB) hit ratio.

Linux divides this virtual address space into an area for applications, called user space, and an area for the kernel, called kernel space. The split between the two is set by a kernel configuration parameter named PAGE_OFFSET. In a typical 32-bit embedded system, PAGE_OFFSET is 0xc0000000, giving the lower 3 gigabytes to user space and the top gigabyte to kernel space. The user address space is allocated per process so that each process runs in...