Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Beginning to profile

When looking at the entire system, a good place to start is with a simple tool such as
top, which gives you an overview very quickly. It shows you how much memory is being used, which processes are eating CPU cycles, and how this is spread across different cores and times.

If top shows that a single application is using up all the CPU cycles in user space, then you can profile that application using perf.

If two or more processes have a high CPU usage, there is probably something that is coupling them together, perhaps data communication. If a lot of cycles are spent on system calls or handling interrupts, then there may be an issue with the kernel configuration or with a device driver. In either case, you need to start by taking a profile
of the whole system, again using perf.

If you want to find out more about the kernel and the sequencing of events there, use Ftrace, LTTng, or BPF.

There could be other problems that top will not help you with. If...