Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Summary

Nobody can complain that Linux lacks options for profiling and tracing. This chapter has given you an overview of some of the most common ones.

When faced with a system that is not performing as well as you would like, start with top and try to identify the problem. If it proves to be a single application, then you can use perf record/report to profile it, bearing in mind that you will have to configure the kernel to enable perf and you will need debug symbols for the binaries and kernel. If the problem is not so well localized, use perf or BCC tools to get a system-wide view.

Ftrace comes into its own when you have specific questions about the behavior of the kernel. The function and function_graph tracers provide a detailed view of the relationship and sequence of function calls. The event tracers allow you to extract more information about functions, including the parameters and return values. LTTng performs a similar role, making use of the event trace mechanism,...