Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Chapter 2: Learning about Toolchains

The toolchain is the first element of embedded Linux and the starting point of your project. You will use it to compile all the code that will run on your device. The choices you make at this early stage will have a profound impact on the final outcome. Your toolchain should be capable of making effective use of your hardware by using the optimum instruction set for your processor. It should support the languages that you require and have a solid implementation of the Portable Operating System Interface (POSIX) and other system interfaces.

Your toolchain should remain constant throughout the project. In other words, once you have chosen your toolchain, it is important to stick with it. Changing compilers and development libraries in an inconsistent way during a project will lead to subtle bugs. That being said, it is still best to update your toolchain when security flaws or bugs are found.

Obtaining a toolchain can be as simple as downloading...