Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Choosing a kernel

The next step is to choose the kernel for your project, balancing the desire to always use the latest version of software against the need for vendor-specific additions and an interest in the long-term support of the code base.

Kernel development cycle

Linux is developed at a fast pace, with a new version being released every 8 to 12 weeks. The way that the version numbers are constructed has changed a bit in recent years. Before July 2011, there was a three-number version scheme with version numbers that looked like 2.6.39. The middle number indicated whether it was a developer or stable release; odd numbers (2.1.x, 2.3.x, 2.5.x) were for developers and even numbers were for end users.

From version 2.6 onward, the idea of a long-lived development branch (the odd numbers) was dropped, as it slowed down the rate at which new features were made available to the users. The change in numbering from 2.6.39 to 3.0 in July 2011 was purely because Linus felt that...