Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

A better way of managing device nodes

Creating device nodes statically with mknod is quite hard work and inflexible. There are other ways to create device nodes automatically on demand:

  • devtmpfs: This is a pseudo filesystem that you mount over /dev at boot time.
    The kernel populates it with device nodes for all the devices that the kernel currently knows about, and it creates nodes for new devices as they are detected at runtime. The nodes are owned by root and have default permissions of 0600. Some well-known device nodes, such as /dev/null and /dev/random, override the default to 0666. To see exactly how this is done, take a look at the Linux source file drivers/char/mem.c and see how struct memdev is initialized.
  • mdev: This is a BusyBox applet that is used to populate a directory with device nodes and to create new nodes as needed. There is a configuration file, /etc/mdev.conf, which contains rules for ownership and the mode of the nodes.
  • udev: This is the mainstream...