Book Image

Creative DIY Microcontroller Projects with TinyGo and WebAssembly

By : Tobias Theel
Book Image

Creative DIY Microcontroller Projects with TinyGo and WebAssembly

By: Tobias Theel

Overview of this book

While often considered a fast and compact programming language, Go usually creates large executables that are difficult to run on low-memory or low-powered devices such as microcontrollers or IoT. TinyGo is a new compiler that allows developers to compile their programs for such low-powered devices. As TinyGo supports all the standard features of the Go programming language, you won't have to tweak the code to fit on the microcontroller. This book is a hands-on guide packed full of interesting DIY projects that will show you how to build embedded applications. You will learn how to program sensors and work with microcontrollers such as Arduino UNO and Arduino Nano IoT 33. The chapters that follow will show you how to develop multiple real-world embedded projects using a variety of popular devices such as LEDs, 7-segment displays, and timers. Next, you will progress to build interactive prototypes such as a traffic lights system, touchless hand wash timer, and more. As you advance, you'll create an IoT prototype of a weather alert system and display those alerts on the TinyGo WASM dashboard. Finally, you will build a home automation project that displays stats on the TinyGo WASM dashboard. By the end of this microcontroller book, you will be equipped with the skills you need to build real-world embedded projects using the power of TinyGo.
Table of Contents (13 chapters)
10
Afterword

Chapter 2: Building a Traffic Lights Control System

In the previous chapter, we set up TinyGo and our IDE, and we now know how to build and flash our programs to the Arduino UNO. We are now going to utilize this knowledge to go one step further.

In this chapter, we are going to build a traffic lights control system. We are going to split the project into small steps, where we build and test each component. At the end, we are going to put everything together. We will be using multiple LEDs, a breadboard, GPIO ports, and a button to interrupt the normal flow to switch pedestrian lights to green. By the end of the chapter, you will know how to control external LEDs, read the state of a button, use GPIO ports, how to distinguish resistors, and how to utilize Goroutines in TinyGo.

In this chapter, we are going to cover the following topics:

  • Lighting an external LED
  • Lighting a single LED when a button is pressed
  • Building traffic lights
  • Building traffic lights with pedestrian lights