Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By : Lentin Joseph, Jonathan Cacace
Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By: Lentin Joseph, Jonathan Cacace

Overview of this book

The Robot Operating System (ROS) is a software framework used for programming complex robots. ROS enables you to develop software for building complex robots without writing code from scratch, saving valuable development time. Mastering ROS for Robotics Programming provides complete coverage of the advanced concepts using easy-to-understand, practical examples and step-by-step explanations of essential concepts that you can apply to your ROS robotics projects. The book begins by helping you get to grips with the basic concepts necessary for programming robots with ROS. You'll then discover how to develop a robot simulation, as well as an actual robot, and understand how to apply high-level capabilities such as navigation and manipulation from scratch. As you advance, you'll learn how to create ROS controllers and plugins and explore ROS's industrial applications and how it interacts with aerial robots. Finally, you'll discover best practices and methods for working with ROS efficiently. By the end of this ROS book, you'll have learned how to create various applications in ROS and build your first ROS robot.
Table of Contents (22 chapters)
1
Section 1 – ROS Programming Essentials
4
Section 2 – ROS Robot Simulation
11
Section 3 – ROS Robot Hardware Prototyping
15
Section 4 – Advanced ROS Programming

Chapter 8: ROS for Aerial Robots

In previous chapters, we have considered only ground-based and industrial robots. In the last decade, a new kind of system has become very popular – flying robots, also known as Unmanned Aerial Vehicles (UAVs). Nowadays, UAVs are constructed in different shapes and dimensions. In the main, they can be divided into fixed-wing (these being airplane-like vehicles) and rotary-wing (these being vehicles with multiple vertical axis rotors). Modern UAVs are equipped with onboard computers and sensors that make them real autonomous robots, able to perform different tasks, such as autonomous navigation. Using ROS makes it possible to read a UAV's sensors and send commands to the aerial platform. In addition to the real-life devices, it is also possible to use Gazebo to simulate the hardware and the sensors of different kinds of aerial systems.

This chapter is divided into two sections. First, we will discuss the basic components of aerial robots...