Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By : Lentin Joseph, Jonathan Cacace
Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By: Lentin Joseph, Jonathan Cacace

Overview of this book

The Robot Operating System (ROS) is a software framework used for programming complex robots. ROS enables you to develop software for building complex robots without writing code from scratch, saving valuable development time. Mastering ROS for Robotics Programming provides complete coverage of the advanced concepts using easy-to-understand, practical examples and step-by-step explanations of essential concepts that you can apply to your ROS robotics projects. The book begins by helping you get to grips with the basic concepts necessary for programming robots with ROS. You'll then discover how to develop a robot simulation, as well as an actual robot, and understand how to apply high-level capabilities such as navigation and manipulation from scratch. As you advance, you'll learn how to create ROS controllers and plugins and explore ROS's industrial applications and how it interacts with aerial robots. Finally, you'll discover best practices and methods for working with ROS efficiently. By the end of this ROS book, you'll have learned how to create various applications in ROS and build your first ROS robot.
Table of Contents (22 chapters)
1
Section 1 – ROS Programming Essentials
4
Section 2 – ROS Robot Simulation
11
Section 3 – ROS Robot Hardware Prototyping
15
Section 4 – Advanced ROS Programming

Developing a low-level controller and a high-level ROS Control hardware interface for a differential drive robot

In the following two sections, the base controller, mentioned in the Navigation Stack, will be developed. For Remo, this platform-specific node is split into two software components.

The first component is the high-level diffbot::DiffBotHWInterface that inherits from hardware_interface::RobotHW, acting as an interface between robot hardware and the packages of ROS Control that communicate with the Navigation Stack and provide diff_drive_controller (http://wiki.ros.org/diff_drive_controller) – one of many available controllers from ROS Control. With the gazebo_ros_control plugin, the same controller including its configuration can be used in the simulation and the real robot. An overview of ROS Control in a simulation and the real world is given in the following figure (http://gazebosim.org/tutorials/?tut=ros_control):

Figure 11.4 –...