Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By : Lentin Joseph, Jonathan Cacace
Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By: Lentin Joseph, Jonathan Cacace

Overview of this book

The Robot Operating System (ROS) is a software framework used for programming complex robots. ROS enables you to develop software for building complex robots without writing code from scratch, saving valuable development time. Mastering ROS for Robotics Programming provides complete coverage of the advanced concepts using easy-to-understand, practical examples and step-by-step explanations of essential concepts that you can apply to your ROS robotics projects. The book begins by helping you get to grips with the basic concepts necessary for programming robots with ROS. You'll then discover how to develop a robot simulation, as well as an actual robot, and understand how to apply high-level capabilities such as navigation and manipulation from scratch. As you advance, you'll learn how to create ROS controllers and plugins and explore ROS's industrial applications and how it interacts with aerial robots. Finally, you'll discover best practices and methods for working with ROS efficiently. By the end of this ROS book, you'll have learned how to create various applications in ROS and build your first ROS robot.
Table of Contents (22 chapters)
1
Section 1 – ROS Programming Essentials
4
Section 2 – ROS Robot Simulation
11
Section 3 – ROS Robot Hardware Prototyping
15
Section 4 – Advanced ROS Programming

Getting started with real Universal Robots hardware and ROS-I

After testing our control algorithms in simulation using Gazebo, we can start to perform manipulation tasks with a real Universal Robots arm. The main difference between performing a trajectory simulating the robot and using real hardware is that we need to start the driver that will contact the arm controller to set the desired joint positions.

The default driver of Universal Robots arms is released with the ur_driver package of ROS-I. This driver has been successfully tested with system versions ranging from v1.5.7 to v1.8.2. The last version of Universal Robots controllers is v3.2, so the default version of the ROS-I driver might not be fully compatible. For the newer versions of these systems (v3.x and up), it is recommended to use the unofficial ur_modern_driver package:

  1. To download ur_modern_driver, use the following Git repository:
    git clone https://github.com/ros-industrial/ur_modern_driver.git
  2. After...