Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By : Lentin Joseph, Jonathan Cacace
Book Image

Mastering ROS for Robotics Programming, Third edition - Third Edition

By: Lentin Joseph, Jonathan Cacace

Overview of this book

The Robot Operating System (ROS) is a software framework used for programming complex robots. ROS enables you to develop software for building complex robots without writing code from scratch, saving valuable development time. Mastering ROS for Robotics Programming provides complete coverage of the advanced concepts using easy-to-understand, practical examples and step-by-step explanations of essential concepts that you can apply to your ROS robotics projects. The book begins by helping you get to grips with the basic concepts necessary for programming robots with ROS. You'll then discover how to develop a robot simulation, as well as an actual robot, and understand how to apply high-level capabilities such as navigation and manipulation from scratch. As you advance, you'll learn how to create ROS controllers and plugins and explore ROS's industrial applications and how it interacts with aerial robots. Finally, you'll discover best practices and methods for working with ROS efficiently. By the end of this ROS book, you'll have learned how to create various applications in ROS and build your first ROS robot.
Table of Contents (22 chapters)
1
Section 1 – ROS Programming Essentials
4
Section 2 – ROS Robot Simulation
11
Section 3 – ROS Robot Hardware Prototyping
15
Section 4 – Advanced ROS Programming

Summary

This chapter offered a brief overview of MoveIt! and the Navigation stack of ROS and demonstrated its capabilities using Gazebo simulation of a robotic arm mobile base. The chapter started with a MoveIt! overview and discussed detailed concepts about MoveIt!. After discussing MoveIt!, we interfaced MoveIt! with Gazebo. After interfacing, we executed the trajectory from MoveIt! on Gazebo.

The next section was about the ROS Navigation stack. We discussed its concepts and workings as well. After discussing the concepts, we tried to interface our robot in Gazebo to the Navigation stack and build a map using SLAM. After this, we performed autonomous navigation using amcl and the static map.

In the next chapter, we will discuss pluginlib, nodelets, and controllers.

Here are few questions based on what we covered in this chapter.