Book Image

Linux Device Driver Development - Second Edition

By : John Madieu
Book Image

Linux Device Driver Development - Second Edition

By: John Madieu

Overview of this book

Linux is by far the most-used kernel on embedded systems. Thanks to its subsystems, the Linux kernel supports almost all of the application fields in the industrial world. This updated second edition of Linux Device Driver Development is a comprehensive introduction to the Linux kernel world and the different subsystems that it is made of, and will be useful for embedded developers from any discipline. You'll learn how to configure, tailor, and build the Linux kernel. Filled with real-world examples, the book covers each of the most-used subsystems in the embedded domains such as GPIO, direct memory access, interrupt management, and I2C/SPI device drivers. This book will show you how Linux abstracts each device from a hardware point of view and how a device is bound to its driver(s). You’ll also see how interrupts are propagated in the system as the book covers the interrupt processing mechanisms in-depth and describes every kernel structure and API involved. This new edition also addresses how not to write device drivers using user space libraries for GPIO clients, I2C, and SPI drivers. By the end of this Linux book, you’ll be able to write device drivers for most of the embedded devices out there.
Table of Contents (23 chapters)
1
Section 1 -Linux Kernel Development Basics
6
Section 2 - Linux Kernel Platform Abstraction and Device Drivers
12
Section 3 - Making the Most out of Your Hardware
18
Section 4 - Misc Kernel Subsystems for the Embedded World

Linux kernel locking mechanisms and shared resources

A resource is said to be shared when it is accessible by several contenders, whether exclusively or not. When it is exclusive, access must be synchronized so that only the allowed contender(s) may own the resource. Such resources might be memory locations or peripheral devices, and the contenders might be processors, processes, or threads. The operating system performs mutual exclusion by atomically modifying a variable that holds the current state of the resource, making this visible to all contenders that might access the variable at the same time. Atomicity guarantees the modification to be entirely successful, or not successful at all. Modern operating systems nowadays rely on hardware (which should allow atomic operations) to implement synchronization, though a simple system may ensure atomicity by disabling interrupts (and avoiding scheduling) around the critical code section.

We can enumerate two synchronization mechanisms...