Book Image

Operator Training Simulator Handbook

By : Joseph Philip
Book Image

Operator Training Simulator Handbook

By: Joseph Philip

Overview of this book

Operator training simulators in the process industry have been around since the 1970s, but you may not find a book that documents the development of these systems and the standard best practices. The Operator Training Simulator Handbook covers best practices for OTS engineering and OTS training development and delivery, starting from the basic the jargon and the different types of OTS systems. It will take you through the best approaches to project specification as well as building, maintenance, planning, and delivering these systems by sharing real-life experiences and dos and don’ts. As you advance, you'll uncover the various challenges in the planning and delivery of operator training models and understand how to address those by working through real-world projects. This book helps in specifying the best fit for purpose, choosing a cost-effective system when acquiring an OTS. You'll also learn how you can turn your OTS projects into digital twins before finally learning all about documentation in a typical OTS project, covering the sample structure that you can use as a starting point in your projects. By the end of the book, you'll have learned best practices for developing operator training simulator systems and have a reference guide to overcome common challenges.
Table of Contents (11 chapters)
1
Section 1: Introduction, Definitions, and Classifications
3
Section 2: Best Practices for the Development of OTS Systems
6
Section 3: OTS' Future, Training Model, and Reference Documents

What is an OTS?

Figure 1.2 shows how Inputs/Outputs (IOs) to and from the field communicate with the control system with its Process Automation System (PAS), Safety Instrumented System (SIS), Fire and Gas (F&G), and third-party controllers such as Compressor Control (CC), for example.

The CRTs in the control room can see the status of the plant through their Human Machine Interface (HMI) screens and can control it from the control room:

Figure 1.2 – A real-life plant

Figure 1.2 – A real-life plant

In an OTS environment (Figure 1.3), the HMI in the OTS control room is exactly the same as the one in the real-life plant, so the CRTs will see no difference between operating the OTS and operating a real plant:

Figure 1.3 – The OTS of the plant

Figure 1.3 – The OTS of the plant

The control system in the OTS environment is an emulation of the actual control system, which also matches the same behavior as the real control system. One difference is that while the real system controllers run on a controller where everyone can handle up to any number of IOs (let's say 100), the emulation will run on a virtual/desktop machine that emulates many controllers in one virtual/desktop machine.

The process in the field is modeled using process modeling software (such as AspenTech's HYSYS®, Honeywell's UniSim®, AVEVA'S DYNSIM®, or NAPCON's ProsDS®). Usually, this will be running on another virtual/desktop machine.

Figure 1.4, taken from https://www.fossilconsulting.com/2018/10/01/purchase-a-training-simulator/, shows how the OTS looks very similar to the control room. The operator should not see any difference between the two:

Figure 1.4 – The OTS of the plant is similar to the control room

Figure 1.4 – The OTS of the plant is similar to the control room

Now that we have defined the OTS system that we will address in this book, let's discuss who this book is directed toward.