Book Image

Embedded Programming with Modern C++ Cookbook

By : Igor Viarheichyk
Book Image

Embedded Programming with Modern C++ Cookbook

By: Igor Viarheichyk

Overview of this book

Developing applications for embedded systems may seem like a daunting task as developers face challenges related to limited memory, high power consumption, and maintaining real-time responses. This book is a collection of practical examples to explain how to develop applications for embedded boards and overcome the challenges that you may encounter while developing. The book will start with an introduction to embedded systems and how to set up the development environment. By teaching you to build your first embedded application, the book will help you progress from the basics to more complex concepts, such as debugging, logging, and profiling. Moving ahead, you will learn how to use specialized memory and custom allocators. From here, you will delve into recipes that will teach you how to work with the C++ memory model, atomic variables, and synchronization. The book will then take you through recipes on inter-process communication, data serialization, and timers. Finally, you will cover topics such as error handling and guidelines for real-time systems and safety-critical systems. By the end of this book, you will have become proficient in building robust and secure embedded applications with C++.
Table of Contents (17 chapters)

Working with limited resources

It is a common misconception that embedded systems are based on hardware that is much slower compared to regular desktop or server hardware. Although this is commonly the case, it is not always true.

Some particular applications may require lots of computation power of large amounts of memory. For example, autonomous driving requires both memory and CPU resources to handle the large amount of data that comes from various sensors using AI algorithms in real time. Another example is high-end storage systems that utilize large amounts of memory and resources for data caching, replication, and encryption.

In either case, the embedded system hardware is designed to minimize the cost of the overall system. The results for software engineers working with embedded systems is that resources are scarce. They are expected to utilize all of the available resources and take performance and memory optimizations very seriously.