Book Image

Embedded Programming with Modern C++ Cookbook

By : Igor Viarheichyk
Book Image

Embedded Programming with Modern C++ Cookbook

By: Igor Viarheichyk

Overview of this book

Developing applications for embedded systems may seem like a daunting task as developers face challenges related to limited memory, high power consumption, and maintaining real-time responses. This book is a collection of practical examples to explain how to develop applications for embedded boards and overcome the challenges that you may encounter while developing. The book will start with an introduction to embedded systems and how to set up the development environment. By teaching you to build your first embedded application, the book will help you progress from the basics to more complex concepts, such as debugging, logging, and profiling. Moving ahead, you will learn how to use specialized memory and custom allocators. From here, you will delve into recipes that will teach you how to work with the C++ memory model, atomic variables, and synchronization. The book will then take you through recipes on inter-process communication, data serialization, and timers. Finally, you will cover topics such as error handling and guidelines for real-time systems and safety-critical systems. By the end of this book, you will have become proficient in building robust and secure embedded applications with C++.
Table of Contents (17 chapters)

Looking at performance implications

Most embedded applications are optimized for performance. As discussed earlier, the target CPU is chosen to be cost-efficient and developers extract all the computation power that it is capable of. An additional factor is communication with peripheral hardware. This often requires precise and fast reaction times. As a result, there is only limited room for the scripting, interpretable, bytecode languages such as Python or Java. Most of the embedded programs are written in languages that compile into the native code, primarily C and C++.

To achieve maximum performance, embedded programs utilize all the performance optimization capabilities of compilers. Modern compilers are so good at code optimization that they can outperform code in assembly language written by skilled developers.

However, engineers cannot rely solely on the performance optimizations provided by compilers. To achieve maximum efficiency, they have to take into account the specifics of the target platform. Coding practices that are commonly used for desktop or server applications running on an x86 platform may be inefficient for different architectures such as ARM or MIPS. The utilization of specific features of the target architecture often gives a significant performance boost to the program.