Book Image

Embedded Programming with Modern C++ Cookbook

By : Igor Viarheichyk
Book Image

Embedded Programming with Modern C++ Cookbook

By: Igor Viarheichyk

Overview of this book

Developing applications for embedded systems may seem like a daunting task as developers face challenges related to limited memory, high power consumption, and maintaining real-time responses. This book is a collection of practical examples to explain how to develop applications for embedded boards and overcome the challenges that you may encounter while developing. The book will start with an introduction to embedded systems and how to set up the development environment. By teaching you to build your first embedded application, the book will help you progress from the basics to more complex concepts, such as debugging, logging, and profiling. Moving ahead, you will learn how to use specialized memory and custom allocators. From here, you will delve into recipes that will teach you how to work with the C++ memory model, atomic variables, and synchronization. The book will then take you through recipes on inter-process communication, data serialization, and timers. Finally, you will cover topics such as error handling and guidelines for real-time systems and safety-critical systems. By the end of this book, you will have become proficient in building robust and secure embedded applications with C++.
Table of Contents (17 chapters)

Working with hardware errors

A significant part of an embedded developer's work is dealing with hardware. Unlike most application developers, embedded developers cannot rely on hardware. Hardware fails for different reasons and embedded developers have to distinguish purely software failures from software failures caused by hardware failures or glitches.

Early versions of hardware

Embedded systems are based on specialized hardware designed and manufactured for a particular use case. This implies that at the time that the software for the embedded system is being developed, its hardware is not yet stable and well tested. When software developers encounter an error in their code behavior, it does not necessarily mean there is a software bug but it might be a result of incorrectly working hardware.

It is hard to triage these kinds of problems. They require knowledge, intuition, and sometimes the use of an oscilloscope to narrow the root cause of an issue down to hardware.

Hardware is unreliable

Hardware is inherently unreliable. Each hardware component has a probability of failure and developers should be aware that hardware can fail at any time. Data stored in memory can be corrupted because of memory failure. Messages being transmitted over a communication channel can be altered because of external noise.

Embedded developers are prepared for these situations. They use checksums or cyclic redundancy check (CRC) code to detect and, if possible, correct corrupted data.

The influence of environmental conditions

High temperature, low temperature, high humidity, vibration, dust, and other environmental factors can significantly affect the performance and reliability of hardware. While developers design their software to handle all potential hardware errors, it is common practice to test the system in different environments. Besides that, knowledge of environmental conditions can give an important clue when working on the root-cause analysis of an issue.