Book Image

Practical Python Programming for IoT

By : Gary Smart
Book Image

Practical Python Programming for IoT

By: Gary Smart

Overview of this book

The age of connected devices is here, be it fitness bands or smart homes. It's now more important than ever to understand how hardware components interact with the internet to collect and analyze user data. The Internet of Things (IoT), combined with the popular open source language Python, can be used to build powerful and intelligent IoT systems with intuitive interfaces. This book consists of three parts, with the first focusing on the "Internet" component of IoT. You'll get to grips with end-to-end IoT app development to control an LED over the internet, before learning how to build RESTful APIs, WebSocket APIs, and MQTT services in Python. The second part delves into the fundamentals behind electronics and GPIO interfacing. As you progress to the last part, you'll focus on the "Things" aspect of IoT, where you will learn how to connect and control a range of electronic sensors and actuators using Python. You'll also explore a variety of topics, such as motor control, ultrasonic sensors, and temperature measurement. Finally, you'll get up to speed with advanced IoT programming techniques in Python, integrate with IoT visualization and automation platforms, and build a comprehensive IoT project. By the end of this book, you'll be well-versed with IoT development and have the knowledge you need to build sophisticated IoT systems using Python.
Table of Contents (20 chapters)
1
Section 1: Programming with Python and the Raspberry Pi
6
Section 2: Practical Electronics for Interacting with the Physical World
9
Section 3: IoT Playground - Practical Examples to Interact with the Physical World

motor.py

Starting at line 1, we import PiGPIO and the Motor class defined in the motor_class.py file, before defining several variables describing how we are connecting the L293D to our Raspberry Pi's GPIO pins:

import pigpio                    # (1)
from time import sleep
from motor_class import Motor

# Motor A
CHANNEL_1_ENABLE_GPIO = 18 # (2)
INPUT_1Y_GPIO = 23
INPUT_2Y_GPIO = 24

# Motor B
CHANNEL_2_ENABLE_GPIO = 16 # (3)
INPUT_3Y_GPIO = 20
INPUT_4Y_GPIO = 21

Referring back to Figure 10.3 and Figure 10.4, if we consider the Motor A (channel 1) side of the circuits, we see that the logic pins are connected to GPIOs 23 and 24 at line 2 – INPUT_1Y_GPIO = 23 and INPUT_2Y_GPIO = 24. These logic pins (together with the enable pin that we will cover shortly) are used to set the state and rotational direction of the motor. The truth table for these states is shown as follows.

This table was sourced from the L293D datasheet and reformatted and supplemented to match...