Book Image

Practical Python Programming for IoT

By : Gary Smart
Book Image

Practical Python Programming for IoT

By: Gary Smart

Overview of this book

The age of connected devices is here, be it fitness bands or smart homes. It's now more important than ever to understand how hardware components interact with the internet to collect and analyze user data. The Internet of Things (IoT), combined with the popular open source language Python, can be used to build powerful and intelligent IoT systems with intuitive interfaces. This book consists of three parts, with the first focusing on the "Internet" component of IoT. You'll get to grips with end-to-end IoT app development to control an LED over the internet, before learning how to build RESTful APIs, WebSocket APIs, and MQTT services in Python. The second part delves into the fundamentals behind electronics and GPIO interfacing. As you progress to the last part, you'll focus on the "Things" aspect of IoT, where you will learn how to connect and control a range of electronic sensors and actuators using Python. You'll also explore a variety of topics, such as motor control, ultrasonic sensors, and temperature measurement. Finally, you'll get up to speed with advanced IoT programming techniques in Python, integrate with IoT visualization and automation platforms, and build a comprehensive IoT project. By the end of this book, you'll be well-versed with IoT development and have the knowledge you need to build sophisticated IoT systems using Python.
Table of Contents (20 chapters)
1
Section 1: Programming with Python and the Raspberry Pi
6
Section 2: Practical Electronics for Interacting with the Physical World
9
Section 3: IoT Playground - Practical Examples to Interact with the Physical World

HC-SR04 distance measurement process

In this section, we will cover the process used to measure distance with the HC-SR04. Don't get concerned if this does not make immediately sense. I've provided the details here as background material, as this is the logical process that is implemented by our example program to make the sensor work. You will also find the process documented in the sensor's datasheet.

We measure distance with the HC-SR04 through the correct use and monitoring of the TRIG and ECHO pins. The process looks like this:

  1. Pull the TRIG pin HIGH for 10 microseconds. Pulling TRIG HIGH also makes the ECHO pin HIGH.
  2. Start a timer.
  3. Wait for either of the following to happen:
    • ECHO to go LOW
    • 38 milliseconds to elapse (from the datasheet, this is the time for >4 meters)
  4. Stop the timer.

If 38 milliseconds have passed, we conclude that there is no object in front of the sensor (at least within the effective range of 2 centimeters to 4 meters). Otherwise...