Book Image

Practical Python Programming for IoT

By : Gary Smart
Book Image

Practical Python Programming for IoT

By: Gary Smart

Overview of this book

The age of connected devices is here, be it fitness bands or smart homes. It's now more important than ever to understand how hardware components interact with the internet to collect and analyze user data. The Internet of Things (IoT), combined with the popular open source language Python, can be used to build powerful and intelligent IoT systems with intuitive interfaces. This book consists of three parts, with the first focusing on the "Internet" component of IoT. You'll get to grips with end-to-end IoT app development to control an LED over the internet, before learning how to build RESTful APIs, WebSocket APIs, and MQTT services in Python. The second part delves into the fundamentals behind electronics and GPIO interfacing. As you progress to the last part, you'll focus on the "Things" aspect of IoT, where you will learn how to connect and control a range of electronic sensors and actuators using Python. You'll also explore a variety of topics, such as motor control, ultrasonic sensors, and temperature measurement. Finally, you'll get up to speed with advanced IoT programming techniques in Python, integrate with IoT visualization and automation platforms, and build a comprehensive IoT project. By the end of this book, you'll be well-versed with IoT development and have the knowledge you need to build sophisticated IoT systems using Python.
Table of Contents (20 chapters)
1
Section 1: Programming with Python and the Raspberry Pi
6
Section 2: Practical Electronics for Interacting with the Physical World
9
Section 3: IoT Playground - Practical Examples to Interact with the Physical World

Making sure the ADS1115 is connected to your Raspberry Pi

I2C devices are identified to their master (that is, our Raspberry Pi) by a unique address, and the default address for the ADS1115 is 0x48. Since I2C devices are addressed, multiple devices can share the same I2C channels (pins) on a Raspberry Pi.

You can change the I2C devices on most IC2 devices if you have multiple devices sharing the same address. This is the purpose of the ADDR terminal on the ADS1115, and you can find instructions for its use in the ADS1115 datasheet.

Raspbian OS contains the i2cdetect utility that queries the Raspberry Pi's I2C interface for connected devices. Run the following in a Terminal:

$ i2cdetect -y 1

The -y option assumes we answer yes to any prompts. 1 is the I2C bus number. It's always 1 on the Raspberry Pi 3 or 4. We expect to see the output like this:

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- --...