Book Image

Learning Linux Binary Analysis

By : Ryan "elfmaster" O'Neill
Book Image

Learning Linux Binary Analysis

By: Ryan "elfmaster" O'Neill

Overview of this book

Learning Linux Binary Analysis is packed with knowledge and code that will teach you the inner workings of the ELF format, and the methods used by hackers and security analysts for virus analysis, binary patching, software protection and more. This book will start by taking you through UNIX/Linux object utilities, and will move on to teaching you all about the ELF specimen. You will learn about process tracing, and will explore the different types of Linux and UNIX viruses, and how you can make use of ELF Virus Technology to deal with them. The latter half of the book discusses the usage of Kprobe instrumentation for kernel hacking, code patching, and debugging. You will discover how to detect and disinfect kernel-mode rootkits, and move on to analyze static code. Finally, you will be walked through complex userspace memory infection analysis. This book will lead you into territory that is uncharted even by some experts; right into the world of the computer hacker.
Table of Contents (17 chapters)
Learning Linux Binary Analysis
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
Index

ELF dynamic linking


In the old days, everything was statically linked. If a program used external library functions, the entire library was compiled directly into the executable. ELF supports dynamic linking, which is a much more efficient way to go about handling shared libraries.

When a program is loaded into memory, the dynamic linker also loads and binds the shared libraries that are needed to that process address space. The topic of dynamic linking is rarely understood by people in any depth as it is a relatively complex procedure and seems to work like magic under the hood. In this section, we will demystify some of its complexities and reveal how it works and also how it can be abused by attackers.

Shared libraries are compiled as position-independent and can therefore be easily relocated into a process address space. A shared library is a dynamic ELF object. If you look at readelf -h lib.so, you will see that the e_type (ELF file type) is called ET_DYN. Dynamic objects are very similar...