Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Advanced Natural Language Processing with TensorFlow 2
  • Table Of Contents Toc
Advanced Natural Language Processing with TensorFlow 2

Advanced Natural Language Processing with TensorFlow 2

By : Ashish Bansal, Mullen
4.8 (35)
close
close
Advanced Natural Language Processing with TensorFlow 2

Advanced Natural Language Processing with TensorFlow 2

4.8 (35)
By: Ashish Bansal, Mullen

Overview of this book

Recently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems.
Table of Contents (13 chapters)
close
close
11
Other Books You May Enjoy
12
Index

Preface

2017 was a watershed moment for Natural Language Processing (NLP), with Transformer-and attention-based networks coming to the fore. The past few years have been as transformational for NLP as AlexNet was for computer vision in 2012. Tremendous advances in NLP have been made, and we are now moving from research labs into applications.

These advances span the domains of Natural Language Understanding (NLU), Natural Language Generation (NLG), and Natural Language Interaction (NLI). With so much research in all of these domains, it can be a daunting task to understand the exciting developments in NLP.

This book is focused on cutting-edge applications in the fields of NLP, language generation, and dialog systems. It covers the concepts of pre-processing text using techniques such as tokenization, parts-of-speech (POS) tagging, and lemmatization using popular libraries such as Stanford NLP and spaCy. Named Entity Recognition (NER) models are built from scratch using Bi-directional Long Short-Term Memory networks (BiLSTMs), Conditional Random Fields (CRFs), and Viterbi decoding. Taking a very practical, application-focused perspective, the book covers key emerging areas such as generating text for use in sentence completion and text summarization, multi-modal networks that bridge images and text by generating captions for images, and managing the dialog aspects of chatbots. It covers one of the most important reasons behind recent advances of NLP – transfer learning and fine tuning. Unlabeled textual data is easily available but labeling this data is costly. This book covers practical techniques that can simplify the labeling of textual data.

By the end of the book, I hope you will have advanced knowledge of the tools, techniques, and deep learning architectures used to solve complex NLP problems. The book will cover encoder-decoder networks, Long Short-Term Memory networks (LSTMs) and BiLSTMs, CRFs, BERT, GPT-2, GPT-3, Transformers, and other key technologies using TensorFlow.

Advanced TensorFlow techniques required for building advanced models are also covered:

  • Building custom models and layers
  • Building custom loss functions
  • Implementing learning rate annealing
  • Using tf.data for loading data efficiently
  • Checkpointing models to enable long training times (usually several days)

This book contains working code that can be adapted to your own use cases. I hope that you will even be able to do novel state-of-the-art research using the skills you'll gain as you progress through the book.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Advanced Natural Language Processing with TensorFlow 2
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon