Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Transformers for Natural Language Processing
  • Table Of Contents Toc
  • Feedback & Rating feedback
Transformers for Natural Language Processing

Transformers for Natural Language Processing

By : Denis Rothman
4.2 (37)
close
close
Transformers for Natural Language Processing

Transformers for Natural Language Processing

4.2 (37)
By: Denis Rothman

Overview of this book

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
Table of Contents (16 chapters)
close
close
13
Other Books You May Enjoy
14
Index

Summary

In this chapter, we explored SRL. SRL tasks are difficult for both humans and machines. Transformer models have shown that human baselines can be reached for many NLP topics to a certain extent.

We found that a simple BERT-based transformer can perform predicate sense disambiguation. We ran a simple transformer that could identify the meaning of a verb (predicate) without lexical or syntactic labeling. Shi and Lin (2019) used a standard "sentence + verb" input format to train their BERT-based transformer.

We found that a transformer trained with a stripped-down "sentence + predicate" input could solve simple and complex problems. The limits were reached when we used relatively rare verb forms. However, these limits are not final. If difficult problems are added to the training dataset, the research team could improve the model.

We also discovered that AI for the good of humanity exists. The Allen Institute for AI has made many free AI resources...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Transformers for Natural Language Processing
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon