Book Image

C# 9 and .NET 5 – Modern Cross-Platform Development - Fifth Edition

By : Mark J. Price
Book Image

C# 9 and .NET 5 – Modern Cross-Platform Development - Fifth Edition

By: Mark J. Price

Overview of this book

In C# 9 and .NET 5 – Modern Cross-Platform Development, Fifth Edition, expert teacher Mark J. Price gives you everything you need to start programming C# applications. This latest edition uses the popular Visual Studio Code editor to work across all major operating systems. It is fully updated and expanded with a new chapter on the Microsoft Blazor framework. The book’s first part teaches the fundamentals of C#, including object-oriented programming and new C# 9 features such as top-level programs, target-typed new object instantiation, and immutable types using the record keyword. Part 2 covers the .NET APIs, for performing tasks like managing and querying data, monitoring and improving performance, and working with the file system, async streams, serialization, and encryption. Part 3 provides examples of cross-platform apps you can build and deploy, such as websites and services using ASP.NET Core or mobile apps using Xamarin.Forms. The best type of application for learning the C# language constructs and many of the .NET libraries is one that does not distract with unnecessary application code. For that reason, the C# and .NET topics covered in Chapters 1 to 13 feature console applications. In Chapters 14 to 20, having mastered the basics of the language and libraries, you will build practical applications using ASP.NET Core, Model-View-Controller (MVC), and Blazor. By the end of the book, you will have acquired the understanding and skills you need to use C# 9 and .NET 5 to create websites, services, and mobile apps.
Table of Contents (23 chapters)
22
Index

Hashing data

In .NET, there are multiple hash algorithms you can choose from. Some do not use any key, some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

  • Collision resistance: How rare is it to find two inputs that share the same hash?
  • Preimage resistance: For a hash, how difficult would it be to find another input that shares the same hash?

Some common non-keyed hashing algorithms are shown in the following table:

...

Algorithm

Hash size

Description

MD5

16 bytes

This is commonly used because it is fast, but it is not collision-resistant.

SHA1