Book Image

Android Studio 4.1 Development Essentials – Kotlin Edition

By : Neil Smyth
Book Image

Android Studio 4.1 Development Essentials – Kotlin Edition

By: Neil Smyth

Overview of this book

Android 11 has a ton of new capabilities. It comes up with three foci: a people-centric approach to communication, controls to let users quickly access and manage all of their smart devices, and privacy to give users more ways to control how data on devices is shared. This book starts off with the steps necessary to set up an Android development and testing environment, followed by an introduction to programming in Kotlin. An overview of Android Studio and its architecture is provided, followed by an in-depth look at the design of Android applications and user interfaces using the Android Studio environment. You will also learn about the Android architecture components along with some advanced topics such as touch screen handling, gesture recognition, the recording and playback of audio, app links, dynamic delivery, the AndroidStudio profiler, Gradle build configuration, and submitting apps to the Google Play Developer Console. The concepts of material design are also covered in detail. This edition of the book also covers printing, transitions, and cloud-based file storage; foldable device support is the cherry on the cake. By the end of this course, you will be able to develop Android 11 Apps using Android Studio 4.1, Kotlin, and Android Jetpack. The code files for the book can be found here: https://www.ebookfrenzy.com/retail/as41kotlin/index.php
Table of Contents (95 chapters)
95
Index

2.7 Android Studio Memory Management

Android Studio is a large and complex software application that consists of many background processes. Although Android Studio has been criticized in the past for providing less than optimal performance, Google has made significant performance improvements in recent releases and continues to do so with each new version. Part of these improvements include allowing the user to configure the amount of memory used by both the Android Studio IDE and the background processes used to build and run apps. This allows the software to take advantage of systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-8

To view and modify the current memory configuration, select the File -> Settings... (Android Studio -> Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed under System Settings in the left-hand navigation panel as illustrated in Figure 2-9 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your system can spare without slowing down other processes.

Figure 2-9

The IDE memory setting adjusts the memory allocated to Android Studio and applies regardless of the currently loaded project. When a project is built and run from within Android Studio, on the other hand, a number of background processes (referred to as daemons) perform the task of compiling and running the app. When compiling and running large and complex projects, build time may potentially be improved by adjusting the daemon heap settings. Unlike the IDE heap settings, these settings apply only to the current project and can only be accessed when a project is open in Android Studio.