Book Image

Android Studio 4.1 Development Essentials – Kotlin Edition

By : Neil Smyth
Book Image

Android Studio 4.1 Development Essentials – Kotlin Edition

By: Neil Smyth

Overview of this book

Android 11 has a ton of new capabilities. It comes up with three foci: a people-centric approach to communication, controls to let users quickly access and manage all of their smart devices, and privacy to give users more ways to control how data on devices is shared. This book starts off with the steps necessary to set up an Android development and testing environment, followed by an introduction to programming in Kotlin. An overview of Android Studio and its architecture is provided, followed by an in-depth look at the design of Android applications and user interfaces using the Android Studio environment. You will also learn about the Android architecture components along with some advanced topics such as touch screen handling, gesture recognition, the recording and playback of audio, app links, dynamic delivery, the AndroidStudio profiler, Gradle build configuration, and submitting apps to the Google Play Developer Console. The concepts of material design are also covered in detail. This edition of the book also covers printing, transitions, and cloud-based file storage; foldable device support is the cherry on the cake. By the end of this course, you will be able to develop Android 11 Apps using Android Studio 4.1, Kotlin, and Android Jetpack. The code files for the book can be found here: https://www.ebookfrenzy.com/retail/as41kotlin/index.php
Table of Contents (95 chapters)
95
Index

64.9 Returning Results from a Coroutine

The above example ran a suspend function as a coroutine but did not demonstrate how to return results. Suppose, however, that the performSlowTask() function is required to return a string value which is to be displayed to the user via a TextView object.

To do this, we need to rewrite the suspend function to return a Deferred object. A Deferred object is essentially a commitment to provide a value at some point in the future. By calling the await() function on the Deferred object, the Kotlin runtime will deliver the value when it is returned by the coroutine. The code in our startTask() function might, therefore, be rewritten as follows:

fun startTask(view: View) {

    coroutineScope.launch(Dispatchers.Main) {

      statusText.text = performSlowTask().await()

    }

}

The problem now is that we are having to use the launch builder to start the coroutine...