Book Image

Implementing Cisco UCS Solutions

Book Image

Implementing Cisco UCS Solutions

Overview of this book

Cisco Unified Computing System(UCS) provides unique features for the contemporary data centres. Cisco UCS is a unified solution that consolidates computing, network and storage connectivity components along-with centralized management. Cisco UCS reduces TCO and improves scalability and flexibility. Stateless computing blade server's design simplifies the troubleshooting, and Cisco-patented extended memory technology provides higher virtualized servers consolidation results. A hands-on guide to take you through deployment in Cisco UCS. With real-world examples for configuring and deploying Cisco UCS components, this book will prepare you for the practical deployments of Cisco UCS data centre solutions. If you want to learn and enhance your hands-on skills with Cisco UCS solutions, this book is certainly for you. Starting with the description of Cisco UCS equipment options, this hands-on guide then introduces Cisco UCS Emulator which is an excellent resource to practically learn Cisco UCS components' deployment. You will also be introduced to all areas of UCS solutions with practical configuration examples. You will also discover the Cisco UCS Manager, which is the centralized management interface for Cisco UCS. Once you get to know UCS Manager, the book dives deeper into configuring LAN, SAN, identity pools, resource pools, and service profiles for the servers. The book also presents other administration topics including Backup, Restore, user's roles, and high availability cluster configuration. Finally, you will learn about virtualized networking, 3rd party integration tools and testing failure scenarios. You will learn everything you need to know for the rapidly growing Cisco UCS deployments in the real-world.
Table of Contents (19 chapters)
Implementing Cisco UCS Solutions
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
Index

Chapter 1. Cisco UCS Physical Architecture and Installing UCS Hardware

In previous decades, computers evolved at a dramatic pace. Moore's law, which predicted that the density of transistors and integrated circuits would double every two years as computing components kept on shrinking in size while improving in computational capacity, has truly prevailed. This technological evolution led to three distinct generations of computing devices.

We witnessed the era of the following generations:

  • Gigantic mainframe computers

  • Commoditized personal computers and tower and rack servers (also known as pizza-box servers)

  • Blade servers (also known as modular servers)

Mainframes were monolithic systems often with proprietary hardware and software. With their enormous computing power, mainframes were able to run multiple applications; however, their major limitations were cost and many single points of failure. Due to their high cost and management complexity, mainframes remained mainly confined to military use, universities, and some very large organizations.

Tower and rack-mounted servers usually have limited computational resources as compared to mainframes; however, these are very cost effective. Because of the limited resources available on these servers, a one-to-one server-to-application ratio is usually the way to go. Because of this one server one application design, rack and tower servers need more rack space, separate cabling, individual power supplies, and more cooling in the datacenter, which makes management of the infrastructure quite complex. However, this second generation of computers is generally very cost effective. This led to the mass adoption of computers everywhere.

The latest trend in the ever evolving computer architecture space is to move away from tower and rack-mounted servers in favor of blade servers. In today's highly demanding enterprise applications, blade server architecture provides excellent features when compared with rack and tower servers. These features include the following:

  • Less rack space usage

  • Less cabling

  • Shared power

  • Consolidated I/O

  • Easy management

  • Excellent heating and cooling

Contemporary datacenters are facing unprecedented growth in computational demands alongside the need for reducing implementation and operational costs. Considering these factors, blade servers are designed to minimize the use of resources and space. Components in a blade chassis are either removed or shared between blade servers.

The minimum form factor of a rack server is 1 Rack Unit (RU). 1 RU is equal to 1.75 inches, and the most common server rack height is usually 42 RU. It is therefore possible to fit only 42 pizza-box servers in a standard rack. With blade servers, it is possible to achieve higher densities of servers per rack.

In a blade server, data connectivity interfaces and power supplies are also shared. Thus, blade servers also require less cabling, and hence less management.

In this chapter, we will discuss physical components of the Unified Computing System (UCS) equipment. The list of the topics covered in this chapter is as follows:

  • A quick look at the UCS equipment

  • Understanding the physical architecture of UCS

  • Understanding Fabric Interconnects (FIs)

  • Cisco UCS 5100 series blade server chassis

  • IOM modules

  • Blade servers and rack-mount servers

  • Getting started with mezzanine cards

  • Power capacity and power plugs

  • Installing UCS chassis components

  • Cabling FI and IOM