Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Summary


Embedded hardware will continue to get more complex, following the trajectory set by Moore's Law. Linux has the power and the flexibility to make use of hardware in an efficient way.

Linux is just one component of open source software out of the many that you need to create a working product. The fact that the code is freely available means that people and organizations at many different levels can contribute. However, the sheer variety of embedded platforms and the fast pace of development lead to isolated pools of software which are not shared as efficiently as they should be. In many cases, you will become dependent on this software, especially the Linux kernel that is provided by your SoC or Board vendor, and to a lesser extent the toolchain. Some SoC manufacturers are getting better at pushing their changes upstream and the maintenance of these changes is getting easier.

Fortunately, there are some powerful tools that can help you create and maintain the software for your device. For example, Buildroot is ideal for small systems and the Yocto Project for larger ones.

Before I describe these build tools, I will describe the four elements of embedded Linux, which you can apply to all embedded Linux projects, however they are created. The next chapter is all about the first of these, the toolchain, which you need to compile code for your target platform.