Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

What is real-time?


The nature of real-time programming is one of the subjects that software engineers love to discuss at length, often giving a range of contradictory definitions. I will begin by setting out what I think is important about real-time.

A task is a real-time task if it has to complete before a certain point in time, known as the deadline. The distinction between real-time and non real-time tasks is shown by considering what happens when you play an audio stream on your computer while compiling the Linux kernel.

The first is a real-time task because there is a constant stream of data arriving at the audio driver and blocks of audio samples have to be written to the audio interface at the playback rate. Meanwhile, the compilation is not real-time because there is no deadline. You simply want it to complete as soon as possible; whether it takes 10 seconds or 10 minutes does not affect the quality of the kernel.

The other important thing to consider is the consequence of missing the...