Book Image

Mobile Forensics ??? Advanced Investigative Strategies

By : Oleg Afonin, Vladimir Katalov
Book Image

Mobile Forensics ??? Advanced Investigative Strategies

By: Oleg Afonin, Vladimir Katalov

Overview of this book

Investigating digital media is impossible without forensic tools. Dealing with complex forensic problems requires the use of dedicated tools, and even more importantly, the right strategies. In this book, you’ll learn strategies and methods to deal with information stored on smartphones and tablets and see how to put the right tools to work. We begin by helping you understand the concept of mobile devices as a source of valuable evidence. Throughout this book, you will explore strategies and "plays" and decide when to use each technique. We cover important techniques such as seizing techniques to shield the device, and acquisition techniques including physical acquisition (via a USB connection), logical acquisition via data backups, over-the-air acquisition. We also explore cloud analysis, evidence discovery and data analysis, tools for mobile forensics, and tools to help you discover and analyze evidence. By the end of the book, you will have a better understanding of the tools and methods used to deal with the challenges of acquiring, preserving, and extracting evidence stored on smartphones, tablets, and the cloud.
Table of Contents (18 chapters)
Mobile Forensics – Advanced Investigative Strategies
Credits
Foreword
About the Authors
About the Reviewer
www.PacktPub.com
Preface

Available information


Unlike personal computers that basically present a single source of information (the device itself consisting of hard drive(s) and volatile memory), mobile forensics deals with multiple data sources. Depending on the sources that are available, investigators may use one or the other tool to acquire information.

Mobile devices

If you have access to the mobile device, you can attempt to perform physical or logical acquisition. Depending on the device itself (hardware) and the operating system it is running, this may or may not be possible. However, physical acquisition still counts as the most complete and up-to-date source of evidence among all available.

Generally speaking, physical acquisition is available for most Android smartphones and tablets, older Apple hardware (iPhones up to iPhone 4, the original iPad, iPad mini, and so on), and recent Apple hardware with a known passcode. As a rule, Apple devices can only be physically acquired if jailbroken. Since a jailbreak obtains superuser privileges by exploiting a vulnerability in iOS, and Apple actively fixes such vulnerabilities, physical acquisition of iOS devices remains iffy. A physical acquisition technique has been recently developed for some Windows phone devices using Cellebrite Universal Forensic Extraction Device (UFED).

Physical acquisition is also available for 64-bit Apple hardware (iPhone 5S and newer, iPad mini 2, and so on). It is worth noting that physical acquisition of 64-bit devices is even more restrictive compared to the older 32-bit hardware, as it requires not only jailbreaking the device and unlocking it with a passcode, but also removing the said passcode from the security settings. Interestingly, according to Apple, even Apple itself cannot extract information from 64-bit iOS devices running iOS 8 and newer, even if they are served a court order.

Physical acquisition is available on a limited number of BlackBerry smartphones running BlackBerry OS 7 and earlier. For BlackBerry smartphones, physical acquisition is available for unlocked BlackBerry 7 and lower devices, where supported, using Cellebrite UFED Touch/4PC through the bootloader method. For BlackBerry 10 devices where device encryption is not enabled, a chip-off can successfully acquire the device memory by parsing the physical dump using Cellebrite UFED.

Note

You can learn more about the aforementioned method here: BlackBerry Forensics - Physical Extraction and Decoding from BlackBerry Devices (Cellebrite)-http://www.cellebrite.com/Pages/blackberry-forensics-physical-extraction-and-decoding-from-blackberry-devices.

Personal computers

Notably, the user's personal computer can help in acquiring mobile evidence. The PC may contain the phone's offline data backups (such as those produced by Apple iTunes) that contain most of the information stored in the phone and available (or unavailable) during physical acquisition.

Lockdown records are created when an iOS device is physically connected to the computer and authorized through iTunes. Lockdown records may be used to gain access to an iOS device without entering the passcode. In addition, the computer may contain binary authentication tokens that can be used to access respective cloud accounts linked to a user's mobile devices.

Cloud storage

Many smartphones and tablets, especially those produced by Apple, offer the ability to back up information into an online cloud. Apple smartphones, for example, will automatically back up their content to Apple iCloud every time they are connected to a charger within the reach of a known Wi-Fi network. Windows phone devices exhibit similar behavior. Google, while not featuring full cloud backups like Apple or Microsoft, collects and retains even more information through Google Mobile Services (GMS). This information can also be pulled from the cloud.

Since cloud backups are transparent, non-intrusive, and require no user interaction, they are left enabled by default by many smartphone users, which makes it possible for an investigator to either acquire the content of the cloud storage or request it from the respective company with a court order.

In order to successfully access the phone's cloud storage, one needs to know the user's authentication credentials (login and password). It may be possible to access iCloud by using binary authentication tokens extracted from the user's computer.

With manufacturers quickly advancing in their security implementations, cloud forensics is quickly gaining importance and recognition among digital forensic specialists.