Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Debugging with GDB

Bugs happen. Identifying and fixing them is part of the development process. There are many different techniques for finding and characterizing program defects, including static and dynamic analysis, code review, tracing, profiling, and interactive debugging. I will look at tracers and profilers in the next chapter, but here I want to concentrate on the traditional approach of watching code execution through a debugger, which in our case is the GNU Project Debugger (GDB). GDB is a powerful and flexible tool. You can use it to debug applications, examine the postmortem files (core files) that are created after a program crash, and even step through kernel code.

In this chapter, we will cover the following topics:

  • The GNU debugger
  • Preparing to debug
  • Debugging applications
  • Just-in-time debugging
  • Debugging forks and threads
  • Core files
  • GDB user interfaces
  • Debugging...