Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Using TFTP to load the kernel

Now that we know how to mount the root filesystem over a network using NFS, you may be wondering if there is a way to load the kernel, device tree, and initramfs over the network as well. If we could do this, the only component that needs to be written to storage on the target is the bootloader. Everything else could be loaded from the host machine. It would save time since you would not need to keep reflashing the target, and you could even get work done while the flash storage drivers are still being developed (it happens).

The Trivial File Transfer Protocol (TFTP) is the answer to the problem. TFTP is a very simple file transfer protocol, designed to be easy to implement in bootloaders such as U-Boot.

But, firstly, you need to install a TFTP daemon on your development machine. On Ubuntu, you could install the tftpd-hpa package, which, by default...