Book Image

Learning Malware Analysis

By : Monnappa K A
5 (1)
Book Image

Learning Malware Analysis

5 (1)
By: Monnappa K A

Overview of this book

Malware analysis and memory forensics are powerful analysis and investigation techniques used in reverse engineering, digital forensics, and incident response. With adversaries becoming sophisticated and carrying out advanced malware attacks on critical infrastructures, data centers, and private and public organizations, detecting, responding to, and investigating such intrusions is critical to information security professionals. Malware analysis and memory forensics have become must-have skills to fight advanced malware, targeted attacks, and security breaches. This book teaches you the concepts, techniques, and tools to understand the behavior and characteristics of malware through malware analysis. It also teaches you techniques to investigate and hunt malware using memory forensics. This book introduces you to the basics of malware analysis, and then gradually progresses into the more advanced concepts of code analysis and memory forensics. It uses real-world malware samples, infected memory images, and visual diagrams to help you gain a better understanding of the subject and to equip you with the skills required to analyze, investigate, and respond to malware-related incidents.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

6. Inspecting PE Header Information


Windows executables must conform to the PE/COFF (Portable Executable/Common Object File Format). The PE file format is used by the Windows executable files (such as .exe, .dll, .sys, .ocx, and .drv) and such files are generally called Portable Executable (PE) files. The PE file is a series of structures and sub-components that contain the information required by the operating system to load it into memory.

When an executable is compiled, it includes a header (PE header), which describes its structure. When the binary is executed, the operating system loader reads the information from the PE header and then loads the binary content from the file into the memory. The PE header contains information such as where the executable needs to be loaded into memory, the address where the execution starts, the list of libraries/functions on which the application relies on, and the resources used by the binary. Examining the PE header yields a wealth of information...