Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

The init program

Running a shell, or even a shell script, at boot time is fine for simple cases, but really you need something more flexible. Normally, Unix systems run a program called init that starts up and monitors other programs. Over the years, there have been many init programs, some of which I will describe in Chapter 9, Interfacing with Device Drivers. For now, I will briefly introduce the init from BusyBox.

The init program begins by reading the configuration file, /etc/inittab. Here is a simple example, which is adequate for our needs:

::sysinit:/etc/init.d/rcS
::askfirst:-/bin/ash

The first line runs a shell script, rcS, when init is started. The second line prints the message Please press Enter to activate this console to the console and starts a shell when you press Enter. The leading - before /bin/ash means that it will become a login shell, which sources /etc/profile...