Book Image

Learning Malware Analysis

By : Monnappa K A
5 (1)
Book Image

Learning Malware Analysis

5 (1)
By: Monnappa K A

Overview of this book

Malware analysis and memory forensics are powerful analysis and investigation techniques used in reverse engineering, digital forensics, and incident response. With adversaries becoming sophisticated and carrying out advanced malware attacks on critical infrastructures, data centers, and private and public organizations, detecting, responding to, and investigating such intrusions is critical to information security professionals. Malware analysis and memory forensics have become must-have skills to fight advanced malware, targeted attacks, and security breaches. This book teaches you the concepts, techniques, and tools to understand the behavior and characteristics of malware through malware analysis. It also teaches you techniques to investigate and hunt malware using memory forensics. This book introduces you to the basics of malware analysis, and then gradually progresses into the more advanced concepts of code analysis and memory forensics. It uses real-world malware samples, infected memory images, and visual diagrams to help you gain a better understanding of the subject and to equip you with the skills required to analyze, investigate, and respond to malware-related incidents.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

2. User Mode And Kernel Mode


In the previous section, we saw how virtual memory is divided into user-space (process memory) and kernel space (kernel memory). The user-space contains code (such as executable and DLL) that runs with restricted access, known as the user mode. In other words, the executable or DLL code that runs in the user space cannot access anything in the kernel space or directly interact with the hardware. The kernel space contains the kernel itself (ntoskrnl.exe) and the device drivers. The code running in the kernel space executes with a high privilege, known as kernel mode, and it can access both the user-space and the kernel space. By providing the kernel with a high privilege level, the operating system ensures that a user-mode application cannot cause system instability by accessing protected memory or I/O ports. Third-party drivers can get their code to run in kernel mode by implementing and installing signed drivers.

The difference between the space (user space/kernel...