Book Image

Python for Data Science For Dummies - Second Edition

By : John Paul Mueller, Luca Massaron
Book Image

Python for Data Science For Dummies - Second Edition

By: John Paul Mueller, Luca Massaron

Overview of this book

Python is a general-purpose programming language created in the late 1980s — and named after Monty Python — that's used by thousands of people to do things from testing microchips at Intel to powering Instagram to building video games with the PyGame library. The book begins by discussing how Python can make data science easy. You’ll learn how to work with the Anaconda tool suite that makes coding in Python easy. You’ll also learn to write code using Google Colab. As you progress, you'll discover how to perform interesting calculations and data manipulations using various Python libraries, such as pandas and NumPy. You’ll learn how to create data visualizations with MatPlotLib. While learning the advanced concepts, you’ll learn how to wrangle data by using techniques, such as hierarchical clustering. Finally, you’ll learn how to work with decision trees and use machine learning to make predictions. By the end of the book, you’ll have the skills and the knowledge that’s needed to write code in Python and extract information from data.
Table of Contents (13 chapters)
Free Chapter
About the Authors
Advertisement Page
Connect with Dummies
End User License Agreement

Chapter 21

Ten Essential Data Resources


Bullet Finding a good starting point

Bullet Obtaining essential learning materials

Bullet Tracking authoritative sources

Bullet Getting the developer resource you need

In reading this book, you discover quite a lot about data science and Python. Before your head explodes from all the new knowledge you gain, it’s important to realize that this book is really just the tip of the iceberg. Yes, there really is more information available out there, and that’s what this chapter is all about. The following sections introduce you to a wealth of data science resource collections that you really need to make the best use of your new knowledge.

In this case, a resource collection is simply a listing of really cool links with some text to tell you why they’re so great. In some cases, you gain access to articles about data science; in other cases, you’re exposed to new tools. In fact, data science is such a huge topic that you could easily...