Book Image

Learning SciPy for Numerical and Scientific Computing

By : Francisco J. Blanco-Silva
Book Image

Learning SciPy for Numerical and Scientific Computing

By: Francisco J. Blanco-Silva

Overview of this book

<p>It's essential to incorporate workflow data and code from various sources in order to create fast and effective algorithms to solve complex problems in science and engineering. Data is coming at us faster, dirtier, and at an ever increasing rate. There is no need to employ difficult-to-maintain code, or expensive mathematical engines to solve your numerical computations anymore. SciPy guarantees fast, accurate, and easy-to-code solutions to your numerical and scientific computing applications.<br /><br />"Learning SciPy for Numerical and Scientific Computing" unveils secrets to some of the most critical mathematical and scientific computing problems and will play an instrumental role in supporting your research. The book will teach you how to quickly and efficiently use different modules and routines from the SciPy library to cover the vast scope of numerical mathematics with its simplistic practical approach that's easy to follow.<br /><br />The book starts with a brief description of the SciPy libraries, showing practical demonstrations for acquiring and installing them on your system. This is followed by the second chapter which is a fun and fast-paced primer to array creation, manipulation, and problem-solving based on these techniques.<br /><br />The rest of the chapters describe the use of all different modules and routines from the SciPy libraries, through the scope of different branches of numerical mathematics. Each big field is represented: numerical analysis, linear algebra, statistics, signal processing, and computational geometry. And for each of these fields all possibilities are illustrated with clear syntax, and plenty of examples. The book then presents combinations of all these techniques to the solution of research problems in real-life scenarios for different sciences or engineering — from image compression, biological classification of species, control theory, design of wings, to structural analysis of oxides.</p>
Table of Contents (15 chapters)

Object essentials


We have been introduced to the basic object – the multidimensional array (which in NumPy jargon is referred to as ndarray). All elements of the array are casted to the same datatype. We obtain this datatype by issuing the dtype command. We are able to access the value of any of its elements, as well as its dimension (shape), size, and many other properties of the array. The following session illustrates how to obtain some of that information:

>>>img.dtype, img.shape, img.size
(dtype('int64'), (512, 512), 262144)
>>>img[32,67]
87

Let us interpret the outputs. The entries of img are 64-bit integer values ('int64'). This is essentially different on different systems, and depends on both the Python installation and our computer specifications. The shape of the array (note it comes as a Python tuple) is 512 x 512, and consequently it has 262144 entries. The grayscale value of the image at the 33rd column and 68th row is 87 (note that in NumPy, as in Python...