Book Image

Learning Geospatial Analysis with Python

By : Joel Lawhead
4 (1)
Book Image

Learning Geospatial Analysis with Python

4 (1)
By: Joel Lawhead

Overview of this book

Geospatial analysis is used in almost every field you can think of from medicine, to defense, to farming. It is an approach to use statistical analysis and other informational engineering to data which has a geographical or geospatial aspect. And this typically involves applications capable of geospatial display and processing to get a compiled and useful data. "Learning Geospatial Analysis with Python" uses the expressive and powerful Python programming language to guide you through geographic information systems, remote sensing, topography, and more. It explains how to use a framework in order to approach Geospatial analysis effectively, but on your own terms. "Learning Geospatial Analysis with Python" starts with a background of the field, a survey of the techniques and technology used, and then splits the field into its component speciality areas: GIS, remote sensing, elevation data, advanced modelling, and real-time data. This book will teach you everything there is to know, from using a particular software package or API to using generic algorithms that can be applied to Geospatial analysis. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don't become bogged down in just getting ready to do analysis. "Learning Geospatial Analysis with Python" will round out your technical library with handy recipes and a good understanding of a field that supplements many a modern day human endeavors.
Table of Contents (17 chapters)
Learning Geospatial Analysis with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Common raster data concepts


Remote sensing contains thousands of operations which can be performed on data. And this field changes on an almost daily basis as new satellites are put into space and computer power increases. Despite its decades long history, we haven't even scratched the surface of the knowledge this field can provide the human race. Once again, similar to the common GIS processes, this minimal list of operations gives you the basis to evaluate any technique used in remote sensing.

Band math

Band math is multidimensional array mathematics. In array math, arrays are treated as single units, which are added, subtracted, multiplied, and divided. But in an array the corresponding numbers in each row and column across multiple arrays are computed simultaneously.

Change detection

Change detection is the process of taking two images of the same location at different times and highlighting the changes. A change can do the addition of something on the ground, such as a new building or the loss of a feature, such as coastal erosion. There are many algorithms for detecting changes among images and also determining qualitative factors, such as how long ago the change took place. The following image from a research project by the US Oak Ridge National Laboratory shows rainforest deforestation between 1984 and 2000 in the state of Rondonia, Brazil. Colors are used to show how recently the forest was cut. Green represents virgin rain forest, white is forest cut within 2 years of the end of the date range, red within 22 years, and the other colors fall in between as described in the legend:

Histogram

A histogram is the statistical distribution of values in a data set. The horizontal axis represents a unique value in a data set while the vertical axis represents the frequency of that unique value within the raster. A histogram is a key operation in most raster processing. It can be used for everything from enhancing contrast in an image to serving as a basis for object classification and image comparison. The following example from NASA shows a histogram for a satellite image which has been classified into different categories representing the underlying surface feature:

Feature extraction

Feature extraction is the manual or automatic digitization of features in an image to points, lines, or polygons. This process serves as the basis for the vectorization of images in which a raster is converted to a vector data set. An example of feature extraction is extracting a coastline from a satellite image and saving it as a vector data set. If this extraction is performed over several years you could monitor the erosion or other changes along that coastline.

Supervised classification

Objects on the earth reflect different wavelengths of light depending on the material they are made of. In remote sensing, analysts collect wavelength signatures for specific types of land cover (for example, concrete) and build a library for a specific area. A computer can then use that library to automatically locate classes in that library in a new image of that same area.

Unsupervised classification

In an unsupervised classification a computer groups pixels with similar reflectance values in an image without any other reference information other than the histogram of the image.