Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Preparing to debug


You need to compile the code you want to debug with debug symbols. GCC offers two options for this: -g and -ggdb. The latter adds debug information that is specific to GDB, whereas the former generates information in an appropriate format for whichever target operating system you are using, making it the more portable option. In our particular case, the target operating system is always Linux and it makes little difference whether you use -g or -ggdb. Of more interest is the fact that both options allow you to specify the level of debug information, from 0 to 3:

  • 0: This produces no debug information at all and is equivalent to omitting the -g or -ggdb switch

  • 1: This produces little information but which includes function names and external variables which is enough to generate a back trace

  • 2: This is the default and includes information about local variables and line numbers so that you can do source level debugging and a single step through the code

  • 3: This includes extra...