Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
About the Author
About the Reviewers

Chapter 14. Real-time Programming

Much of the interaction between a computer system and the real world happens in real-time and so this is an important topic for developers of embedded systems. I have touched on real-time programming in several places so far: in Chapter 10, Learning About Processes and Threads, I looked at scheduling policies and priority inversion, and in Chapter 11, Managing Memory, I described the problems with page faults and the need for memory locking. Now, it is time to bring these topics together and look at real-time programming in some depth.

In this chapter, I will begin with a discussion about the characteristics of real-time systems and then consider the implications for system design, both at the application and kernel levels. I will describe the real-time kernel patch, PREEMPT_RT, and show how to get it and apply it to a mainline kernel. The last sections will describe how to characterize system latencies using two tools: cyclictest and Ftrace.

There are other...