Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Choosing the C library


The programming interface to the Unix operating system is defined in the C language, which is now defined by the POSIX standards. The C library is the implementation of that interface; it is the gateway to the kernel for Linux programs, as shown in the following diagram. Even if you are writing programs in another language, maybe Java or Python, the respective run-time support libraries will have to call the C library eventually:

The C library is the gateway to the kernel for applications

Whenever the C library needs the services of the kernel it will use the kernel system call interface to transition between user space and kernel space. It is possible to bypass the C library by making kernel system calls directly, but that is a lot of trouble and almost never necessary.

There are several C libraries to choose from. The main options are as follows:

  • glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not...