Book Image

Mastering Embedded Linux Programming

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming

By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (22 chapters)
Mastering Embedded Linux Programming
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Chapter 4. Porting and Configuring the Kernel

The kernel is the third element of embedded Linux. It is the component that is responsible for managing resources and interfacing with hardware and so affects almost every aspect of your final software build. It is usually tailored to your particular hardware configuration although, as we saw in Chapter 3, All About Bootloaders, device trees allow you to create a generic kernel that is tailored to particular hardware by the contents of the device tree.

In this chapter, we will look at how to get a kernel for a board and how to configure and compile it. We will look again at bootstrap, this time focusing on the part the kernel plays. We will also look at device drivers and how they pick up information from the device tree.