Book Image

LLVM Essentials

By : Mayur Pandey, Suyog Sarda, David Farago
Book Image

LLVM Essentials

By: Mayur Pandey, Suyog Sarda, David Farago

Overview of this book

LLVM is currently the point of interest for many firms, and has a very active open source community. It provides us with a compiler infrastructure that can be used to write a compiler for a language. It provides us with a set of reusable libraries that can be used to optimize code, and a target-independent code generator to generate code for different backends. It also provides us with a lot of other utility tools that can be easily integrated into compiler projects. This book details how you can use the LLVM compiler infrastructure libraries effectively, and will enable you to design your own custom compiler with LLVM in a snap. We start with the basics, where you’ll get to know all about LLVM. We then cover how you can use LLVM library calls to emit intermediate representation (IR) of simple and complex high-level language paradigms. Moving on, we show you how to implement optimizations at different levels, write an optimization pass, generate code that is independent of a target, and then map the code generated to a backend. The book also walks you through CLANG, IR to IR transformations, advanced IR block transformations, and target machines. By the end of this book, you’ll be able to easily utilize the LLVM libraries in your own projects.
Table of Contents (14 chapters)
LLVM Essentials
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
Index

Extracting a scalar from a vector


An individual scalar element can be extracted from a vector. LLVM provides the extractelement instruction for the same. The first operand of an extractelement instruction is a value of vector type. The second operand is an index indicating the position from which to extract the element.

The extractelement instruction looks like the following:

result = extractelement <4 x i32> %vec, i32 %idx

This can be further understood by keeping the following in mind:

  • vec is a vector

  • idx is the index at which the data to be extracted lies

  • result is of scalar type, which is i32 here

Let's take an example where we want to add all the elements of a given vector and return an integer.

Consider the following code:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>
using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my...