Book Image

Python Geospatial Development - Third Edition

By : Erik Westra
Book Image

Python Geospatial Development - Third Edition

By: Erik Westra

Overview of this book

Geospatial development links your data to locations on the surface of the Earth. Writing geospatial programs involves tasks such as grouping data by location, storing and analyzing large amounts of spatial information, performing complex geospatial calculations, and drawing colorful interactive maps. In order to do this well, you’ll need appropriate tools and techniques, as well as a thorough understanding of geospatial concepts such as map projections, datums, and coordinate systems. This book provides an overview of the major geospatial concepts, data sources, and toolkits. It starts by showing you how to store and access spatial data using Python, how to perform a range of spatial calculations, and how to store spatial data in a database. Further on, the book teaches you how to build your own slippy map interface within a web application, and finishes with the detailed construction of a geospatial data editor using the GeoDjango framework. By the end of this book, you will be able to confidently use Python to write your own geospatial applications ranging from quick, one-off utilities to sophisticated web-based applications using maps and other geospatial data.
Table of Contents (20 chapters)
Python Geospatial Development Third Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Summary


In this chapter, we briefly introduced the Python programming language and the main concepts behind geospatial development. We saw that Python is a very high-level language and that the availability of third-party libraries for working with geospatial data makes it eminently suited to the task of geospatial development. We learned that the term geospatial data refers to finding information that is located on the earth's surface using coordinates, and the term "geospatial development" refers to the process of writing computer programs that can access, manipulate, and display geospatial data.

We then looked at the types of questions that can be answered by analyzing geospatial data, saw how geospatial data can be used for visualization, and learned about geospatial mash-ups, which combine data (often geospatial data) in useful and interesting ways.

Next, we learned how Google Maps, Google Earth, and the development of cheap and portable GPS units have "democratized" geospatial development. We saw how the open source software movement has produced a number of high-quality, freely available tools for geospatial development and looked at how various standards organizations have defined formats and protocols for sharing and storing geospatial data.

Finally, we saw how geolocation is being used to capture and work with geospatial data in surprising and useful ways.

In the next chapter, we will look in more detail at traditional geographic information systems including a number of important concepts that you need to understand in order to work with geospatial data. Different geospatial formats will be examined, and we will finish by using Python to perform various calculations using geospatial data.